Counting Abelian Squares
نویسندگان
چکیده
An abelian square is a nonempty string of length 2n where the last n symbols form a permutation of the first n symbols. Similarly, an abelian r’th power is a concatenation of r blocks, each of length n, where each block is a permutation of the first n symbols. In this note we point out that some familiar combinatorial identities can be interpreted in terms of abelian powers. We count the number of abelian squares and give an asymptotic estimate of this quantity.
منابع مشابه
COUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS
In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...
متن کاملSandpiles and Dominos
We consider the subgroup of the abelian sandpile group of the grid graph consisting of configurations of sand that are symmetric with respect to central vertical and horizontal axes. We show that the size of this group is (i) the number of domino tilings of a corresponding weighted rectangular checkerboard; (ii) a product of special values of Chebyshev polynomials; and (iii) a double-product wh...
متن کاملDecision Algorithms for Fibonacci-Automatic Words, III: Enumeration and Abelian Properties
We continue our study of the class of Fibonacci-automatic words. These are infinite words whose nth term is defined in terms of a finite-state function of the Fibonacci representation of n. In this paper, we show how enumeration questions (such as counting the number of squares of length n in the Fibonacci word) can be decided purely mechanically, using a decision procedure. We reprove some kno...
متن کاملOn Avoiding Sufficiently Long Abelian Squares
A finite word w is an abelian square if w = xx′ with x′ a permutation of x. In 1972, Entringer, Jackson, and Schatz proved that every binary word of length k2+6k contains an abelian square of length ≥ 2k. We use Cartesian lattice paths to characterize abelian squares in binary sequences, and construct a binary word of length q(q + 1) avoiding abelian squares of length ≥ 2 √ 2q(q + 1) or greater...
متن کاملAbelian-square-rich words
An abelian square is the concatenation of two words that are anagrams of one another. A word of length n can contain at most Θ(n) distinct factors, and there exist words of length n containing Θ(n) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length n grow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009